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Abstract 

Understanding changes in mangrove ecosystems driven by human activities, climate change, and 

environmental variations is essential for effective ecological management. The study analyze the 

spatiotemporal variability of the Normalized Difference Vegetation Index (NDVI) and their 

responses to parameters such as sea level (SL), Potential Evapotranspiration (PET), rainfall (RF), 

Standardized Precipitation Index (SPI-1 month), soil moisture (SM), minimum temperature (TN), 

and maximum temperature (TX) within the study area. Trends, relative influences, spatial 

autocorrelation, and relationships between NDVI and climatic-environmental variables, as well as 

partial correlations, were analyzed using the Mann-Kendall monotonic trend test (MKMT), 

Relative Weight Analysis (RWA), partial correlation coefficients (PCC), and Multiple Linear 

Regression (MLR) methods. The spatiotemporal patterns of NDVI, EVI, and SAVI display similar 

dynamics, showing a reduction in bare soil and an increase in sparse and dense vegetation from 

1987 to 2022. Nevertheless, zones of degradation were observed, particularly in southern  in 2022 

compared to 1987, as indicated by NDVI, EVI, and SAVI. These zones coincide with areas of 

increased salinity concentration according to the VSSI index over the same period. A notable 

deterioration in NDVI (> 0.2) was recorded from 2000 to 2012. The interannual trend of NDVI is 

slightly declining. Additionally, analyses with Mann-Kendall and Theil-Sen slope reveal that TN, 

TX, PET, and SPI-1 show increasing trends, though not statistically significant, while SM and LST 

show decreasing trends. For environmental variables, SL indicates an upward trend. Further, partial 

correlation analysis identifies SL, TN, SPI-1, TX, and PET as the primary climatic factors 

controlling vegetation dynamics during the JJAS season, with PCC values of -0.89, 0.87, 0.77, -

0.76, -0.75, and 0.86 with NDVI, respectively. These findings underscore the significant influence 

of select environmental factors on the spatiotemporal dynamics of mangrove vegetation, providing 

insights critical for conservation and management efforts. 
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Climatological and Environmental Datasets 

To investigate climate change and its impact on vegetation, several datasets were used in 

combination, including MODIS Terra LST data, potential evapotranspiration, GLDAS soil 

moisture, CHIRPS V2 precipitation, minimum and maximum air temperatures from ERA5, JTWC 

cyclone tracks, as well as sea level data from SHOM. These were combined with Landsat 4-7 and 

SPOT 3-4 satellite bands, which were employed to calculate the NDVI, EVI, SAVI, and SSVI 

indices (Table 1 and Tables S1 and S2, Supplementary Material). The CHIRPS precipitation 

dataset is an essential resource that delivers a high-quality and long-term record of precipitation by 

combining satellite and in-situ data (Funk et al., 2015). Moreover, for surface air temperature, the 

ERA5 dataset offers a comprehensive collection of atmospheric variables, significantly enhancing 

accuracy and reliability, which is crucial for climate research and monitoring (Hersbach et al., 

2020). The data provided by The Joint Typhoon Warning Center (JTWC) is vital for tracking 

cyclone paths, enabling effective disaster preparedness and response efforts. Indeed, the analysis 

of cyclone track data enables us to determine whether a cyclone has traversed these three sites 

during the period from 1987 to 2022, and to assess whether this coincides with periods of 

degradation, a finding that is also supported by Camberlin et al. (2024).  Remote sensing data, 

particularly from Landsat, which has been operational since 1972, provides a consistent and 

reliable source of Earth observation data, with a 16-day revisit period and 30 m spatial resolution 

for surface reflectance (Table S1). This high temporal and spatial resolution make Landsat ideal 

for long-term monitoring of land cover changes (Fen et al.,2006). Additionally, Landsat 7 is one 

of the best products for monitoring mangroves, utilizing the combination of bands 3 (0.63–0.69 

μm), 4 (0.77–0.90 μm), 5 (1.55–1.75 μm), and 7 (2.09–2.35 μm) (Li et al., 2019). Moreover, SPOT 

satellites, operational since 1986, provide high-resolution Earth observation data with spatial 

resolutions of 10 m and 20 m across three spectral bands: green (0.5 - 0.59 μm), red (0.61 - 0.68 

μm), and near infrared (0.79 - 0.89 μm) (Table S2). This spectral configuration enhances sensitivity 

to chlorophyll, thereby facilitating the assessment of vegetation health. Furthermore, the SPOT 

system ensures complete Earth coverage within a 26-day cycle, positioning it as a crucial tool for 

monitoring environmental changes. The SPOT 3 and SPOT 4 satellites not only maintain continuity 

of services but also enhance capabilities by incorporating the latest advancements in French space 

technology (Courtois et al., 1986). On the other hand, the GLDAS product for soil moisture offers 

crucial insights into terrestrial hydrology. This dataset enables researchers to analyze soil moisture 

dynamics and understand their influence on weather and climate patterns (Bi et al., 2016). MODIS 

Land Surface Temperature (LST) data play a significant role in elucidating the interactions between 

land surface processes and climate variability, serving various applications within environmental 

science (Reiners et al., 2023). 

 

 

 



Table 1. Characteristics of Climate and Oceanographic Data Sources. 

Source Variable Temporal 

availability 

Spatial 

resolution 

References 

Climate Hazards Center, University of 

California, Santa Barbara 

 

Precipitation/SPI 

 

1981 - présent 

 

0.05° 

Funk et al., 2015 

NASA, Moderate Resolution Imaging 

Spectroradiometer (MODIS) 

Land Surface 

Temperature 

 

2000 - présent 

 

1 km 

Reiners et., 2023 

U.S. Geological Survey (USGS)  Vegetation index based 

on LandSat 

1984 - présent 30 m Li et al., 2019 

Centre National d'Études Spatiales 

(CNES) 

Vegetation index based 

on SPOT 

 

 

1986 - Présent 

 

10 - 20 m 

Courtois et al., 1986 

NASA MODIS Land Science Team Potential 

Evapotranspiration 

2000 - Présent 1 km Mu et al., 2011 

NASA Goddard Earth Sciences Data 

and Information Services 

 

Soil Moisture  

 

 

2000 - présent 

 

0.25° 

Bi et al., 2016 

European Centre for Medium-Range 

Weather Forecasts (ECMWF) 

Maximum and  

Minimum air 

Temperature 

 

1959 - présent 

 

0.25° 

Hersbach et al., 2020 

Joint Typhoon Warning Center 

(JTWC) 

Cyclone Tracks 1982 - présent -- JTWC, 2022 

SHOM Sea level 1980 - présent -- SHOM, 2022 

WorldPop Buildings 2001–2021 100 m Dooley et al., 2020 

 

Anthropogenic variables  

To analyze the impact of human activities on vegetation in the region, we used WorldPop data, 

which offers a spatial resolution of approximately 100 meters (3 arc seconds) and is referenced to 

the WGS84 coordinate system (Dooley et al., 2020). Grid cells without any building footprints are 

marked as NAs. This dataset provides building counts within each grid cell, where each building 

is assigned to the grid cell containing the centroid of its footprint. These building counts serve as 

proxies for estimating anthropogenic and activity in the area. 

 

Methodology 

The satellite images utilized in this study were selected based on a cloud cover threshold of less 

than 20%, specifically corresponding to the dry and hot season (June to September, JJAS).  

Vegetation Index calculation 

The Normalized Difference Vegetation Index (NDVI) is commonly used as a reliable estimator of 

light interception by plant canopies (Hatfield et al., 2010). However, NDVI is sensitive to soil 

background noise, an issue that the Soil-Adjusted Vegetation Index (SAVI) was developed to 



address (Huete et al., 1994). By incorporating soil-adjustment factors, SAVI effectively reduces 

soil-related interference (Huete et al., 1988). In addition to SAVI, the Enhanced Vegetation Index 

(EVI) improves upon NDVI by including not only the red and near-infrared (NIR) bands but also 

a blue band. Furthermore, EVI incorporates soil adjustment factors and atmospheric resistance 

terms to correct for aerosol influence on the red band, enhancing its performance in areas with high 

aerosol content (Tsalyuk et al., 2017). For soil salinity estimation, the Vegetation Soil Salinity 

Index (VSSI) has proven to be a suitable index, offering effective results in detecting and assessing 

soil salinity levels (Nguyen et al., 2020). The mathematical equations for the indices discussed 

above are presented in Table 2. 

Table 2. Vegetation indices which have been considered in this study. 

Spectral Index Equation Reference 

Normalized Difference 

Vegetation Index 
𝑵𝑫𝑽𝑰 =  

(𝑵𝑰𝑹 − 𝒓𝒆𝒅)

(𝑵𝑰𝑹 + 𝒓𝒆𝒅)
 

Nguyen et al., 

2020 

 

 

2.1.1 Relationship between geospatial indicator and climate variables 

2.1.1.1   Theil–Sen slope test and Mann–Kendall significance test 

The non-parametric Mann-Kendall Monotonic Trend (MKMT) test is widely recognized as one of 

the most commonly applied methods for detecting trends in time series data (Chisola et al., 2016). 

This test is particularly useful for identifying non-linear trends, evaluating both upward and 

downward monotonic changes over a specified time period (Lamchin et al., 2019). The MKMT 

test statistic (S) is determined by assessing the number of increasing or decreasing value pairs over 

time at each pixel (Hussien et al., 2023). This statistic ranges from -1 to +1, where a value of +1 

signifies a consistent upward trend without any decline, while a value of -1 represents a continuous 

downward trend. A value of 0 indicates the absence of a consistent trend. The formula for 

calculating the MKMT test statistic (S) in time series analysis is outlined by Hussien et al. (2023): 

𝑆 = ∑ ∑ 𝑠𝑖𝑔𝑛(𝑁𝐷𝑉𝐼𝑖 − 𝑁𝐷𝑉𝐼𝑗)𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1        (1) 

Where 

𝑠𝑖𝑔𝑛(𝑁𝐷𝑉𝐼𝑖 − 𝑁𝐷𝑉𝐼𝑗) = {

+1  𝑖𝑓𝑁𝐷𝑉𝐼𝑖 − 𝑁𝐷𝑉𝐼𝑗 < 0

0  𝑖𝑓𝑁𝐷𝑉𝐼𝑖 − 𝑁𝐷𝑉𝐼𝑗 = 0

−1  𝑖𝑓𝑁𝐷𝑉𝐼𝑖 − 𝑁𝐷𝑉𝐼𝑗 > 0

}     (2) 

Therefore: 

𝑍 =  

𝑆−1

√𝑣𝑎𝑟(𝑆)
, 𝑆 > 0

0, 𝑆 = 0
𝑆+1

√𝑣𝑎𝑟(𝑆)
, 𝑆 < 0

           (3) 



Where n is the number of data points, and NDVIi and NDVIj represent the values at time periods i 

and j (with i> j), sign is the function used to compare the data points from these two periods. When 

the absolute value of Z exceeds 1.96, the trend in the time series is considered significant at the 

0.05 level. 

The Theil–Sen slope estimator determines the overall trend in the time series by calculating the 

slope between each pair of data points and then taking the median of these slopes as the 

representative trend. The mathematical equation is given by Wand et al. (2020): 

𝑠𝑙𝑜𝑝𝑒 = 𝑀𝑒𝑑𝑖𝑎𝑛 ×
𝑁𝐷𝑉𝐼𝑖−𝑁𝐷𝑉𝐼𝑗

𝑗−𝑖
, ∀𝑗 > 𝑖       (4) 

Where slope represents the median of the slopes calculated from all data pairs. If the slope is greater 

than 0, it indicates that the vegetation change reflects an upward trend. Conversely, if the slope is 

less than 0, it suggests a downward trend in vegetation change. Median" refers to the median value 

of these slopes. 

 

Autocorrelation and Correlation analysis 

To explore the spatial autocorrelation of NDVI data, we used the "global and local autocorrelation 

analysis based on Moran’s I statistics." This method enables the evaluation of the average spatial 

differences between individual cells and their adjacent neighbors, thereby characterizing the spatial 

attributes of a specific property across the entire study area through global spatial autocorrelation 

analysis. In Moran’s statistics, the normalized z-score can range from -1 to +1. A Moran's I value 

exceeding 0 indicates a positive correlation, which suggests a clustering pattern, while a value 

below 0 points to a negative correlation, reflecting a dispersed arrangement. The calculation of 

Moran’s I statistics for examining spatial autocorrelation is provided by Xu et al. (2015): 

𝐼 =  
𝑁 ∑ ∑ 𝑤𝑖𝑗(𝑥𝑖−𝑥̅)(𝑥𝑗−𝑥̅)𝑛

𝑗=1
𝑛
𝑖=1

∑ ∑ 𝑤𝑖𝑗 ×∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1

𝑛
𝑗=1

𝑛
𝑖=1

        (5) 

Where N represents the number of observations, xi denotes the observed value for cell i, xj  indicates 

the observed value for cell j, 𝑥̅ is the average of cell i or cell j, and wij is the weight assigned to the 

relationship between cells i and j. 

While the global spatial autocorrelation through Moran's I statistics reveals the overall clustering 

pattern, it does not allow for the assessment of spatial association patterns across multiple locations. 

In contrast, Local Spatial Autocorrelation focuses on the significance of local statistics at each 

individual location and identifies the presence of spatial clusters, a capability that global spatial 

autocorrelation lacks. The mathematical equation of local spatial autocorrelation using Moran's I 

is described by (Anselin (2010)). 

𝐼𝑖 = 𝑥𝑖 ∑ 𝑤𝑖𝑗𝑥𝑗
𝑁
𝑖=1,𝑗≠𝑖           (6) 



Relative weight analysis  

Relative weight analysis (RWA) is a statistical technique commonly used in multiple regression 

analysis to assess the relative importance of predictor variables. It provides a way to estimate the 

proportional contribution of each predictor variable to the coefficient of determination (R-squared) 

while considering both their individual impact and their interactions with other variables (Johnson, 

2020; Tonidandel et al., 2015). In this study, the RWA technique was used to assess the relative 

contributions of explanatory factors influencing NDVI mangrove dynamics. 

 

Multiple linear regression assessment 

In order to conduct a pixel-wise multiple linear regression analysis to examine the overall effects 

of climate variables on fluctuations in NDVI, various statistical measures were used to assess the 

strength of the spatiotemporal linear association. These measures included the slope and the 

coefficient of determination (R²) obtained from the regression model. The multiple linear 

regression model can be represented by the following equation:  

𝑌𝑡 = 𝛼 + 𝛽1𝑋1𝑡 + 𝛽2𝑋2𝑡 + ⋯ + 𝛽𝑛𝑋𝑛𝑡 + 𝜀 , 𝑡 ∈ {1,2,3, … 𝑁}       (7) 

where Yt represents the NDVI time series, 𝛼  is the regression intercept, 𝛽is the regression slope, 

𝜀 is the residual of the fit, Xt are the independent variables and t denotes the study period. 

 

Partial correlation 

The bivariate correlation coefficients may not effectively represent the complex relationships 

among variables in multivariate correlation analysis, given that multiple factors can influence these 

relationships. Therefore, partial correlation coefficients were computed to assess the 

spatiotemporal strength and direction of the linear relationship between NDVI and each climate 

variable, while controlling for the effects of the other climate variables (i.e, sea level, PET, SM, 

SPI, LST, TN and TX). The strongest correlation is close to 1, while the weakest is below 0.5. 

Thus, the partial correlation can be calculated as follow (Cheng et al., 2017): 

𝑅𝑥𝑦,𝑧 =
𝑅𝑥𝑦−𝐵𝑥𝑧𝑅𝑥𝑦

√(1−𝑅𝑥𝑦)
2

√(1−𝑅𝑦𝑥)
2
         (8) 

Where x, y, and z represent three distinct variables. Rxy,z signifies the partial correlation between 

variables x and y while accounting for the influence of variable z. Similarly, Rxy denotes the linear 

correlation coefficient between x and y, with Rxz and Ryz conveying analogous interpretations. 

 



 
Fig. 2.  Flowchart methodology of the study area. 

 

 

Due to its extensive area of over 400 hectares, the mangrove forest at the Site was selected for this 

study to examine the relationship between NDVI and climatological and environmental parameters. 

NDVI is retained to study the relationships with these variables. Indeed, this index is useful for 

identification and has been employed in various applications (Li et al., 2019). Fig. 5 presents the 

interannual variability of various parameters, including NDVI, sea level (m), land surface 

temperature (LST) (°C), rainfall (mm), standardized precipitation index (SPI), minimum 

temperature (°C), maximum temperature (°C), soil moisture (mm), and potential 

evapotranspiration (PET) (mm) at the Site site from 1987 to 2022. 

 

 

 

 



   

   

   

  

 

Fig. 5. Temporal variation of NDVI statistics and climate parameters from 1987 to 2022 at the Site,  and -

City mangrove site: (a) SL (m), LST (°C), (c) RF (mm), (d) SPI-1, (e) TN(°C), (f) TX (°C), (g) SM (mm) 

and (h) PET (mm). 

 

Measuring spatial autocorrelations NDVI  

In order to effectively assess the spatial dynamics of vegetation health, it is crucial to examine the 

local Normalized Difference Vegetation Index (NDVI) values within the context of their 

surrounding environments. Fig. 6 illustrates the distribution and clustering of NDVI values, 

revealing patterns of spatial autocorrelation and potential anomalies within the study area.  The 

scatterplot Fig. 6a shows the dispersion of local NDVI values compared to the average NDVI of 

neighboring areas, based on a spatial weighting matrix. The points are grouped into four main 

quadrants: the High-High quadrant represents zones with high NDVI surrounded by high-value 

neighbors, indicating strong positive spatial autocorrelation, often associated with healthy 

vegetation. The Low-High quadrant reflects areas with low NDVI surrounded by high-value 

neighbors, suggesting spatial anomalies or outliers. In contrast, the High-Low quadrant shows areas 

of high NDVI surrounded by neighbors with low values, another form of spatial anomaly. The 

Low-Low quadrant highlights areas where both local NDVI and neighboring values are low, 

typically indicating degraded zones or low vegetation cover. A key transition occurs around 0.4, 

marking a threshold between favorable conditions and more degraded areas Fig. 6b. The local 

Moran’s I index, ranging from -0.91 to +4.2. Negative values signify spatial dissimilarity, often 

indicating abrupt changes in vegetation, while positive values represent strong spatial clustering of 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) 



similar NDVI values. Fig. 6c identifies spatial clusters, with High-High clusters indicating dense 

vegetation areas, mainly in the southern region, and Low-Low clusters indicating degraded areas, 

especially the north and south extremes. High-Low and Low-High clusters reveal spatial anomalies 

where significant contrasts exist between neighboring areas. 

 
  

Fig. 6. Scatterplot of Local Moran's I and Spatial Autocorrelation of NDVI (a, b), and Cluster 

Map of Autocorrelation. 

 

Geospatial distribution of NDVI and climate environmental variables  

Fig. 7 presents the average values of NDVI and several hydroclimatic variables, including 

precipitation, potential evapotranspiration, soil moisture, minimum and maximum air 

temperatures, land surface temperature, and the digital elevation model, at the Site mangrove site 

for the period from 1987 to 2022. To ensure a consistent comparison, the climatic data were 

resampled to a resolution of 30 meters, aligning with that of the NDVI. From 1987 to 2022, the 

NDVI values at Site ranged from -0.07, indicating water bodies, to 0.45, representing moderate 

vegetation (Fig. 7a). The SPI-1 index exhibited values between -0.59 and -0.51, suggesting drought 

conditions that were more pronounced in the northern region of the Site mangrove (Fig. 7b). During 

the JJAS season (June to September), no precipitation was recorded due to the dry season and 

limited cloud cover, resulting in rainless days throughout this period (Fig. 7c). The potential 

evapotranspiration (PET) values varied from 0 to 213.97 mm, with higher levels observed in the 

southern part of Site compared to the north (Fig. 7d). Soil moisture (SM) ranged from 9.51 mm to 

13.77 mm, showing lower values in the northern region than in the south (Fig. 7e). The minimum 

and maximum air temperatures were recorded at 28.74°C to 28.98°C and 34.93°C to 35.89°C, 

respectively, with slightly lower temperatures noted in northern Site compared to the south (Fig. 

(a) (b) (c) 



7f and Fig. 7g). The land surface temperature (LST) varied from 34.14°C to 42.38°C, with coastal 

mangroves generally cooler than those further inland (Fig. 7h). Elevation also appears to influence 

salinity levels related to sea level; higher terrain is primarily located in the central region of the 

Site mangrove. Additionally, according to the NASA SRTM DEM, the southern part of Site is 

situated on higher terrain compared to the northern area, with elevations ranging from 10 to 17 

meters above sea level (Fig. 7i).  This finding summarizes the climatic conditions in the Site region, 

providing a clearer understanding of the area's environmental context. 

     

    

 

Fig. 7. Mean spatial distribution of NDVI (a), SPI-1 (b), RF (c), PET (d), SM (e), TN (f), TX (g), 

LST(h) and Digital Elevation model (DEM) (i) in Site mangrove area from 1987 to 2022. 

 

 

 

 

 

 

(a) (b) (c) (d) 

(f) 

(e) 

(g) (h) (i) 



Spatiotemporal patterns of trends evolution  

Over the past 36 years, the NDVI has shown a decreasing trend in several localities in southern 

Site (Fig. 8a), with a decline rate ranging from -0.02 to 0.01 per year. However, an increasing trend 

is observed primarily at the extremities of southern Site, while the northern part of Site remains 

relatively stable overall. Alongside NDVI trends, Potential Evapotranspiration exhibits a general 

upward trend across the Site mangrove area (Fig. 8b). Both Rainfall and the Standardized 

Precipitation Index (SPI-1) remain largely neutral patterns with no significant trend (Figs. 8c and 

8d). Meanwhile, soil moisture displays a negative trend, mainly in the Site area, ranging from -

0.038 to -0.014 per year (Fig. 8e). The decrease in soil moisture levels can have significant 

implications for mangrove ecosystems, suggesting an increasing water deficit that may hinder the 

growth of mangrove species and reduce the overall resilience and productivity of these coastal 

habitats. In terms of temperature trends, both the minimum and maximum air temperatures show 

an increasing trend, with minimum temperatures rising between 0.049°C and 0.061°C and 

maximum temperatures increasing between 0.06°C and 0.08°C, respectively, from 1987 to 2022 

(Fig. 8f, (Fig. 8g). Spatially, most of the increasing trends occurred in the northern part of Site 

compared to the south. At the same time, LST (Land Surface Temperature) shows an upward trend 

in the southeastern part of Site and, conversely, in the northern area (Fig. 8h). The rate of LST 

ranges from -0.47 to 0.023 per year.  Our results indicate that, over the study period from 1987 to 

2022, spatial trend variations in the Site mangrove area are more homogeneous for PET, rainfall, 

and, to a lesser extent, SPI-1 month and soil moisture. In contrast, minimum and maximum 

temperatures, along with LST, are generally higher in the southern region compared to the northern 

region. 

    

(a) (b) (c) (d) 

A 

Spot  

C 

B 



    

Fig. 8. The geospatial distributions of trends analyses for NDVI (a) and climate variables, including (b) PET 

(°C), (c) Rainfall (mm), (d) SPI, (e) Soil Moisture (mm), (f) Minimum Temperature (°C), (g) Maximum 

Temperature (°C), and (h) LST (°C), over the Site mangrove from 1987 to 2022. 

 

Spatiotemporal of NDVI and climatic variables relationship analysis 

Multi-temporal relation analysis 

To better understand the relative importance of predictive variables in regression models, we 

employed a recent approach that evaluates how each variable contributes to the explained variance 

within the model using Relative Weights Analysis (RWA), focusing on the period from 1987 to 

2022 for the Site site.  The results indicate that sea level exhibits the most significant contribution, 

with a raw relative weight of 0.335, followed by soil moisture and maximum (TX) and minimum 

(TN) temperatures, which have raw relative weights of 0.080 and 0.081, respectively (Fig. 9a and 

Table S5). Notably, soil moisture and minimum temperature have negative influences, while sea 

level, maximum temperature, and minimum temperature show positive relationships (Fig. 9a). The 

land surface temperature (LST) and the one-month Standardized Precipitation Index (SPI-1month) 

also possess lower relative weights, indicating they have less impact on the observed variations. 

Furthermore, although the dry and hot season (JJAS) is characterized by a lack of precipitation, it 

was still represented in the analysis using the one-month Standardized Precipitation Index (SPI-1), 

which serves as a proxy indicator for drought conditions during this period. Additionally, Pearson 

correlation analysis reveals a moderate positive relationship between sea level and minimum 

temperature (TN), with a coefficient close to 0.4 (Fig. 9b). Conversely, the relationship between 

Potential Evapotranspiration (PET) and the considered variables is negative, with a coefficient of 

(h) (e) (f) (g) 



-0.33, suggesting that increased PET may be linked to a decrease in certain other climatic variables 

(Fig. 9b). Besides, the dry and hot season (JJAS) is characterized by minimal precipitation; thus, 

we use the one-month SPI index, which shows a negative correlation with mangrove NDVI. This 

negative correlation may suggest that an increase in soil moisture during this period corresponds 

with conditions less favorable for mangrove growth, possibly due to excess moisture levels. This 

result demonstrates that sea level, minimum and maximum temperatures, and PET are the most 

influential factors driving mangrove dynamics as reflected in NDVI variations. During drought 

periods, SPI, soil moisture, and LST have the least impact on NDVI fluctuations in the Site 

mangrove area over the study period from 1987 to 2022. Our findings align with the results of 

Akhter et al., 2024 and Hussien, et al., 2022. Furthermore, the dry and hot season (JJAS) is 

characterized by a lack of precipitation. This season was excluded from this analysis as its values 

do not vary significantly. 

 
 

Fig. 9. (a)Estimation of relative importance of climate variables as predictors of NDVI. (b) Pearson 

correlation coefficient between NDVI and climate variables. 
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NDVI–Climate variables relationship’s geographic patterns  

To examine the relationship between NDVI and climatic variables in the context of geospatial 

variability, we applied multiple linear regression analysis. The slope coefficients (beta coefficients) 

indicate the strength and nature of these relationships. It can be observed that the beta coefficient 

for Potential Evapotranspiration (PET) is approximately zero over a significant portion of the study 

area, indicating negligible influence on NDVI. However, in certain small areas in the northern 

region, the coefficient is negative, indicating that increased PET leads to a decrease in NDVI (Fig. 

10a). Over the last three decades, the relationship between soil moisture (SM) and NDVI is 

predominantly characterized by beta coefficients ranging from -0.11 to 0.00 in areas where NDVI 

demonstrates signs of recovery, while it is positive in regions where NDVI has declined (Fig. 10b). 

Similarly, the Standardized Precipitation Index (SPI) is positive in areas where NDVI has 

decreased and negative in areas where NDVI has shown recovery (Fig. 10c). Land Surface 

Temperature (LST) demonstrates a negative beta coefficient in regions with declining NDVI and 

conversely (Fig. 10d). Furthermore, both minimum and maximum air temperatures show a negative 

relationship where NDVI is declining and a positive relationship where NDVI is recovering (Figs. 

10e and 10f). It should be noted that the coefficient of determination (local R²) values indicates 

how well the regression model fits the observed data. The local R² values range from 0 to 1. High 

R² values reflect better model performance, while low values suggest poorer fitting.  Thus, the 

distribution of R² reveals that southern Site exhibits better performance compared to northern Site, 

with R² values generally exceeding 0.7 (Fig. 10g). 

    

(a) (b) (d) (c) 



   

 

Fig. 10. The result of Multiple linear regression of NDVI and climate variable (PET, SM, SPI-1, LST, TN, and 

TX) over the Site mangrove from 1987 to 2022. 

 

 

Table S6. Partial correlation between NDVI and climatic parameters. 

 NDVI SL LST RF SPI.1 TX TN SM PET 

NDVI 1.000         

SL -0.899 1.000        

LST 0.527 0.344 1.000       

SPI.1 0.767 0.411 -0.556 0.364 1.000     

TX -0.759 -0.642 0.678 -0.291 0.580 1.000    

TN 0.874 0.685 -0.672 0.352 -0.774 0.952 1.000   

SM 0.002 0.030 -0.171 -0.011 0.067 0.169 -0.044 1.000  

PET -0.746 -0.622 0.613 -0.294 0.632 -0.650 0.735 -0.101 1.000 

 

 

On the other hand, the analysis of partial correlations between the NDVI of the Site mangrove and 

various climatic parameters from 1987 to 2022 reveals intriguing relationships (Table S6). The 

(e) (f) (g) 



NDVI, which indicates vegetation health, shows a strong negative partial correlation with sea level 

(PCC = -0.899), suggesting that rising sea levels could harm the health of the mangrove.  This 

finding is consistent to those of Ruan et al. (2022). Besides, maximum temperature (TX) also 

exhibits a negative partial correlation with NDVI (PCC = -0.759), indicating that higher 

temperatures may be associated with vegetation degradation. In contrast, minimum temperature 

(TN) is positively correlated with NDVI (PCC = 0.874), suggesting that higher nighttime 

temperatures may promote mangrove growth. The positive partial correlation between NDVI and 

the SPI.1 index (PCC = 0.767) indicates that favorable wet conditions are beneficial for vegetation. 

The observed negative relationship between NDVI and precipitation (PCC = -2.558) could reflect 

a complex dynamic, such as soil saturation, while soil moisture shows a very weak partial 

correlation (PCC = 0.002), indicating that other factors may influence the health of the mangrove 

(Table S6). Our results show strong alignment with findings from comparable studies (Hussien et 

al., 2022; Ruan et al., 2022). These findings underscore the importance of an integrated approach 

to analyze the interactions between climatic variables and NDVI, providing insights into the 

potential impacts of climate change on this fragile ecosystem.  

 

Conclusion 

This study presents, for the first time, a long-term dataset of NDVI combined with innovative 

geospatial techniques to analyze changes in three distinct areas of mangrove ecosystems across 

spatial and temporal dimensions. This study compared the NDVI, EVI, and SAVI across the three 

study areas from 1987 to 2022, revealing a spatial reduction in bare soil and an increase in 

vegetation cover. However, a period of mangrove health degradation was noted between 2000 and 

2012 across all three sites (i.e. Site,  Island and  City). The VSSI exhibited significant improvement 

along the Site region while remaining stable in the surrounding areas, particularly on  Island, and  

City. The observed period of degradation may be attributed to various adverse climatic conditions, 

including an increase in SM, SPI, and decrease in TX, TN and PET. On the other hand, data from 

the JTWC indicate no significant impact from cyclonic activity in these regions during the period 

from 1987 to 2022. Besides, WorldPop data suggests the presence of buildings near the three 

mangrove areas, indicating a possible anthropogenic impact on mangrove ecosystems. In terms of 

interannual variability from 1987 to 2022, the NDVI in Site exhibited a slight downward trend, 

coinciding with decreases in LST and SM, while showing increases in sea level, SPI, TX, TN, and 

PET. Further, Relative Weights Analysis and partial correlation analyses indicated that the most 

influential parameters affecting NDVI variability were sea level, PET, TN, and TX. Moreover, 

multiple linear regression analyses revealed a more complex relationship across spatial scales. Each 

variable demonstrated both positive and negative coefficients, varying with terrain elevation. 

Degraded areas were identified in higher-altitude regions, particularly in Site, where negative 

coefficients were associated with TN and LST, while the SPI and soil moisture exhibited positive 

coefficients. PET was more uniformly distributed across the study areas, since 2012, the health of 

the mangroves has remained positively stable. 
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Supplementary Information 

 

Fig. S7.  Monitoring of Tropical Cyclones in the Horn of Africa by JTWC from 1980 to 2022. 
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Fig. S8. 3D representation of SRTM NASA Digital Elevation Model Analysis of Mangrove Zones in (a) , 

(b)  Island, and (c) -City. 

 

 

Fig. S9. Catchment Area delimitation and main wadi over the Republic of . 
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Fig. S10. Number of buildings in the study areas. 
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Table S4. Averaged grid of NDVI and climatic variables over  Mangrove during the period 1987 to 2022. 

 NA 

(%) 

MEAN SD MEDIAN TRIM 

MED 

MAD MIN MAX RANGE SKEW KUR 

TOSIS 

SE 

NDVI 100 0.32 0.12 0.35 0.33 0.12 0.09 0.51 0.42 -0.45 -1.11 0.02 

SL 100 1.72 0.15 1.71 1.71 0.12 1.48 2.23 0.75 1.05 2.02 0.03 

LST 29 39.55 4.17 40.94 40.19 3.51 30.3 43.69 13.39 -0.95 -0.28 1.32 

RF 100 0 0 0 0 0 0 0 0 NaN NaN 0 

SPI-1 100 -0.56 0.26 -0.7 -0.62 0.02 -0.72 0.21 0.93 1.8 2.02 0.05 

TX 100 35.56 2.93 36.19 35.84 2.64 28.52 39.63 11.11 -0.77 -0.32 0.5 

TN 100 28.85 2.54 29.54 29.21 2.21 22.1 31.86 9.76 -1.21 0.72 0.44 

SM 62 12.2 2.61 11.22 11.89 2.26 8.86 19.16 10.3 0.98 0.24 0.57 

PET 53 5.83 1.7 5.77 5.95 1.84 1.49 8.21 6.72 -0.67 0.03 0.4 

 


